Abstract

This study addresses the growing need for sustainable construction materials by investigating the mechanical properties and behavior of palm fiber-reinforced cementitious composite (FRCC), a potential eco-friendly alternative to synthetic fiber reinforcements. Despite the promise of natural fibers in enhancing the mechanical performance of composites, challenges remain in optimizing fiber distribution, fiber–composite bonding mechanism, and its balance to matrix strength. To address these challenges, this study conducted extensive experimental programs using palm fiber as reinforcement, focusing on understanding the fiber–matrix interaction, determining the pullout load–slip relationship, and modeling fiber bridging behavior. The experimental program included density calculations and scanning electron microscope (SEM) analysis to examine the surface morphology and diameter of the fibers. Single fiber pullout tests were performed under varying conditions to assess the pullout load, slip behavior, and failure modes of the palm fiber, and a relationship between the pullout load and slip with the embedded length of the palm fiber was constructed. A trilinear model was developed to describe the pullout load–slip behavior of single fibers, and a corresponding palm-FRCC bridging model was constructed using the results from these tests. Section analysis was conducted to assess the adaptability of the modeled bridging law calculations, and the analysis result of the bending moment–curvature relationship shows a good agreement with the experimental results obtained from the four-point bending test of palm-FRCC. These findings demonstrate the potential of palm fibers in improving the mechanical performance of FRCC and contribute to the broader understanding of natural fiber reinforcement in cementitious composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.