Abstract

Achieving active site engineering at the atomic level poses a significant challenge in the design and optimization of catalysts for energy-efficient catalytic processes, especially for a reaction with two reactants competitively absorbed on catalytic active sites. Herein we show an example that tailoring the local environment of cobalt sites in a robust metal-organic framework through substituting the bridging atom from -Cl to -OH group leads to a highly active catalyst for oxygen activation in an oxidation reaction. Comprehensive characterizations reveal that this variation imparts drastic changes on the electronic structure of metal centers, the competitive reactant adsorption behavior, and the intermediate formation. As a result, exceptional low-temperature CO oxidation performance was achieved with T25(Temperature for 25% conversion) = 35°C and T100 (Temperature for 100% conversion) = 150°C, which stands out from existing MOF-based catalysts and even rivals many noble metal catalysts. This work provides a guidance for the rational design of catalysts for efficient oxygen activation for an oxidation reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call