Abstract

BackgroundThere is worldwide concern of rapidly increasing antimicrobial resistance (AMR). However, there is paucity of resistance surveillance data and updated antibiograms in Africa in general. This study was undertaken in Kenyatta National Hospital (KNH) -the largest public tertiary referral centre in East & Central Africa—to help bridge existing AMR knowledge and practice gaps.MethodsA retrospective review of VITEK 2 (bioMérieux) records capturing antimicrobial susceptibility data for the year 2015 was done and analysed using WHONET and SPSS.ResultsAnalysis of 624 isolates revealed AMR rates higher than most recent local and international reports. 88% of isolates tested were multi-drug resistant (MDR) whereas 26% were extensively-drug resistant (XDR). E. coli and K. pneumoniae had poor susceptibility to penicillins (8–48%), cephalosporins (16–43%), monobactams (17–29%), fluoroquinolones (22–44%) and trimethoprim-sulfamethoxazole (7%). Pseudomonas aeruginosa and Acinetobacter baumanii were resistant to penicillins and cephalosporins, with reduced susceptibility to carbapenems (70% and 27% respectively). S aureus had poor susceptibility to penicillins (3%) and trimethoprim-sulfamethoxazole (29%) but showed excellent susceptibility to imipenem (90%), vancomycin (97%) and linezolid (99%).ConclusionsThe overwhelming resistance to commonly used antibiotics heralds a clarion call towards strengthening antimicrobial stewardship programmes and regular AMR regional surveillance.

Highlights

  • Antibiotic resistance is estimated to contribute to more than 2 million infections and 23,000 deaths annually in the United States alone, translating to a direct cost of $20 billion and additional productivity losses of $35 billion [1]

  • Pseudomonas aeruginosa and Acinetobacter baumanii were resistant to penicillins and cephalosporins, with reduced susceptibility to carbapenems (70% and 27% respectively)

  • The results indicated that the E. coli and K. pneumoniae had poor susceptibility to penicillins (8–48%), cephalosporins (16–43%), monobactams (17–29%), fluoroquinolones (22–44%) and trimethoprim-sulfamethoxazole (7%)

Read more

Summary

Introduction

Antibiotic resistance is estimated to contribute to more than 2 million infections and 23,000 deaths annually in the United States alone, translating to a direct cost of $20 billion and additional productivity losses of $35 billion [1]. Locally in Kenya, the World Health Organization (WHO) estimated about 60% E. coli resistance to cephalosporins in incomplete data surveillance in 2012, [2] whereas a publication from a single Kenyan private tertiary hospital reported that between 2007 to 2009, there was 87% E. coli cephalosporin resistance and between 90 to 92.7% fluoroquinolone resistance among ESBL isolates [5]. For this same hospital, antibiotic susceptibility testing in the year 2014 showed 57% E. coli resistance to Ciprofloxacin in general [6,7]. This study was undertaken in Kenyatta National Hospital (KNH) -the largest public tertiary referral centre in East & Central Africa—to help bridge existing AMR knowledge and practice gaps

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.