Abstract

Gelation and glass transition in a mixed suspension of polystyrene (PS) microsphere and poly(N-isopropylacrylamide) (PNIPAM) microgel were studied as a function of the total colloid volume fraction and mixing ratio of these two components. The PNIPAM microgel, which is adsorbable on the PS microsphere surface, can induce bridging or stabilizing effect between microspheres depending on whether the volume fraction of microgel (ΦMG) is smaller or larger than the saturated adsorption concentration (Φ*MG) for a given volume fraction of the microsphere (ΦMS). Φ*MG is in a linear relationship with ΦMS, and the value of ΦMG/Φ*MG can be taken as an approximate measure of surface coverage. A state diagram of gelation and glass transition is constructed with the short-ranged attractive interaction, resulting from the well-defined bridging bonding. Keeping ΦMG/Φ*MG = 0.20 and increasing ΦMS from 0.25 to 0.55, the mixed suspension transforms from a bridging gel into an attractive glass; moreover, while keeping ΦMS = 0.45 and increasing ΦMG/Φ*MG from 0.20 to 1.2, the mixed suspension changes from a bridging gel into an attractive glass, and then to a repulsive glass. The bridging effect and the cage effect can be distinguished by the yielding behaviors in rheological measurements. In the nonlinear dynamic rheological experiments, one-step yielding, corresponding to the disconnecting of bridge network, is observed in the bridging gel, and one-step yielding, corresponding to the breaking of cage, is observed in the repulsive glass. However, a two-step yielding behavior is found in the bridging-induced attractive glass, which is attributed to the bridging effect of microgels and the caging effect of the dense environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.