Abstract

The growth of ultrathin 1D inorganic nanomaterials with controlled diameters remains challenging by current synthetic approaches. A polymer chain templated method is developed to synthesize ultrathin Bi2 O2 CO3 nanotubes. This formation of nanotubes is a consequence of registry between the electrostatic absorption of functional groups on polymer template and the growth habit of Bi2 O2 CO3 . The bulk bismuth precursor is broken into nanoparticles and anchored onto the polymer chain periodically. These nanoparticles react with the functional groups and gradually evolve into Bi2 O2 CO3 nanotubes along the chain. 5.0 and 3.0nm tubes with narrow diameter deviation are synthesized by using branched polyethyleneimine and polyvinylpyrrolidone as the templates, respectively. Such Bi2 O2 CO3 nanotubes show a decent lithium-ion storage capacity of around 600mA h g-1 at 0.1 A g-1 after 500 cycles, higher than other reported bismuth oxide anode materials. More interestingly, the Bi materials developed herein still show decent capacity at very low temperatures, that is, around 330mA h g-1 (-22 °C) and 170mA h g-1 (-35 °C) after 75 cycles at 0.1 A g-1 , demonstrating their promising potential for practical application in extreme conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.