Abstract

For the analysis of binary data, various deterministic models have been proposed, which are generally simpler to fit and easier to understand than probabilistic models. We claim that corresponding to any deterministic model is an implicit stochastic model in which the deterministic model fits imperfectly, with errors occurring at random. In the context of binary data, we consider a model in which the probability of error depends on the model prediction. We show how to fit this model using a stochastic modification of deterministic optimization schemes. The advantages of fitting the stochastic model explicitly (rather than implicitly, by simply fitting a deterministic model and accepting the occurrence of errors) include quantification of uncertainty in the deterministic model’s parameter estimates, better estimation of the true model error rate, and the ability to check the fit of the model nontrivially. We illustrate this with a simple theoretical example of item response data and with empirical examples from archeology and the psychology of choice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.