Abstract

We prove that minimal instanton bundles on a Fano threefold $X$ of Picard rank one and index two are semistable objects in the Kuznetsov component $\mathsf{Ku}(X)$, with respect to the stability conditions constructed by Bayer, Lahoz, Macrì and Stellari. When the degree of $X$ is at least 3, we show torsion free generalizations of minimal instantons are also semistable objects. As a result, we describe the moduli space of semistable objects with same numerical classes as minimal instantons in $\mathsf{Ku}(X)$. We also investigate the stability of acyclic extensions of non-minimal instantons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.