Abstract
Structural damage identification has been the focus of engineering fields, while the existing damage identification methods heavily depend on extracted “hand-crafted” features. Recently, due to the powerful feature learning capability of deep learning, it has been widely used in structural damage identification. However, those methods only consider the local dependence or temporal relation of data. Thus, in this paper, a structural damage identification method by combining the convolutional neural network (CNN) and gated recurrent unit (GRU) is proposed. The CNN model is used to extract the local dependence of data, and the GRU model is used to extract the temporal feature of data. These two extracted feature matrices are spliced horizontally to a fused eigenvector. The eigenvector is input to the final softmax classifier layer to identify the structural damage state. Experiments on a scale model of the three-span continuous rigid frame bridge shown that the CNN-GRU model performs significantly better than CNN, LSTM, and GRU models for structural damage identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.