Abstract
The potential of a coherent microwave radar for infrastructure health monitoring has been investigated over the past decade. Microwave radar measuring based on interferometry processing is a non-invasive technique that can measure the line-of-sight (LOS) displacements of large infrastructure with sub-millimeter precision and provide the corresponding frequency spectrum. It has the capability to estimate infrastructure vibration simultaneously and remotely with high accuracy and repeatability, which serves the long-term serviceability of bridge structures within the context of the long-term sustainability of civil engineering infrastructure management. In this paper, we present three types of microwave radar systems employed to monitor the displacement of bridges in Japan and Italy. A technique that fuses polarimetric analysis and the interferometry technique for bridge monitoring is proposed. Monitoring results achieved with full polarimetric real aperture radar (RAR), step-frequency continuous-wave (SFCW)-based linear synthetic aperture, and multi-input multi-output (MIMO) array sensors are also presented. The results reveal bridge dynamic responses under different loading conditions, including wind, vehicular traffic, and passing trains, and show that microwave sensor interferometry can be utilized to monitor the dynamics of bridge structures with unprecedented spatial and temporal resolution. This paper demonstrates that microwave sensor interferometry with efficient, cost-effective, and non-destructive properties is a serious contender to employment as a sustainable infrastructure monitoring technology serving the sustainable development agenda.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.