Abstract

AbstractThe burgeoning field of conjugated microporous polymers (CMPs) has generated widespread interest due to their potential as photocatalysts for hydrogen production from water. Nevertheless, their photocatalytic performance is sometimes hindered by inadequate charge separation and transfer, coupled with rapid charge recombination. Herein, a strategy to enhance photocatalytic performance via the customization of π‐bridges through the modulation of heteroatoms in a series of donor‐π‐acceptor (D‐π‐A) CMPs is proposed. This affords optimized energy levels and improved charge separation and transfer, thus boosting photocatalytic efficiency. Among various heteroatom substitutions, S‐doped CMP (10 mg) demonstrates the highest photocatalytic hydrogen evolution rate of 203 µmol h−1 (AQY450nm = 7.4%) under visible light irradiation. Subsequent experimental analysis reveals its superior photocatalytic performance can be largely related to its minimized exciton binding energy, facilitated charge transfer efficiency, and impeded charge recombination among these heteroatom‐doped D‐π‐A CMPs. This research paves the way for the rational design and modification of organic semiconductors for advanced solar‐driven photocatalysis by promoting charge separation and transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.