Abstract

We have carried out extensive molecular-dynamics simulation studies of binary Lennard-Jones mixtures to calculate directly the bridge function at state points lying in a very narrow single fluid phase region between the vapor-liquid and solid-liquid coexistence lines [Lamm and Hall, Fluid Phase Equilib. 182, 37 (2001); 194-197, 197 (2002)]. By varying the density close to the liquid-vapor coexistence line, significant deviations are observed at intermediate distances between the simulated bridge function and two widely used approximate closures in the integral equation theory of liquids, viz. the hybrid mean spherical approximation and the Duh-Henderson closures. The overall qualitative agreement remains the same with small variation in temperature that brings the system closer to either the liquid-vapor or liquid-solid coexistence curve. We also report a comparison of the direct and indirect correlation functions obtained from our simulation studies as well as from the integral equation theory of liquids. Our results emphasize the need for developing new closures applicable to binary fluid mixtures over a wide range of thermodynamic parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.