Abstract
BRG1 has been found to promote the generation of induced pluripotent stem cells (iPSCs) by regulating epigenetic modifications or binding to transcription factors, however, the role of BRG1 on the cellular metabolism during reprogramming has not been reported. In this study, we found that BRG1 improved the efficiency of porcine iPSC generation, and upregulated the expression of pluripotency-related factors. Further analysis revealed that BRG1 promoted cellular glycolysis, and increased levels of glycolysis-related metabolites. It enhanced the transcriptional activity of glycolysis-related gene HK2, PKM2, and PFK-1 promoters, and decreased the enrichment of H3K9me3 in glycolysis- and pluripotency-related gene promoters. BRG1 also increased the phosphorylation level at the Ser473 site of AKT protein. The specific PI3K/AKT signaling pathway inhibitor, LY294002, impaired the generation of porcine iPSCs, downregulated the expression of pluripotency-related factors, and inhibited cellular glycolysis, overexpressing BRG1 rescued those changes caused by LY294002 treatment. In addition, the glycolysis inhibitor 2-DG and BRG1 inhibitor PFI-3 had similar effects to LY294002. The above results suggest that overexpression of BRG1 promotes the generation of porcine iPSCs by facilitating glycolytic reprogramming through the PI3K/AKT signaling pathway.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.