Abstract

The importance of the Breit interaction for an accurate prediction of parity violating energy differences between enantiomers is studied within electroweak quantum chemical frameworks. Besides two-electron orbit-orbit and spin-spin coupling contributions, the Breit interaction gives rise to the spin-other-orbit coupling term of the Breit-Pauli Hamiltonian. The present numerical study demonstrates that neglect of this latter term leads in hydrogen peroxide (H(2)O(2)) to relative deviations in the parity violating potential (V(pv)) by about 10%, whereas further relativistic corrections accounted for within a four-component Dirac-Hartree-Fock-Coulomb (DHFC) framework remain smaller, below 5%. Thus, the main source of discrepancy between previous one-component based (coupled perturbed) Hartree-Fock (HF) and four-component Dirac-Hartree-Fock results for parity violating potentials in H(2)O(2) is the neglect of the Breit contribution in DHFC. In heavier homologs of hydrogen peroxide the relative contribution of the spin-other-orbit coupling term to V(pv) decreases with increasing nuclear charge, whereas other relativistic effects become increasingly important. As shown for the H(2)X(2) (X = O,S,Se,Te,Po) series of molecules and for CHBrClF, to a good approximation these other relativistic influences on V(pv) can be accounted for in one-component based HF calculations with the help of relativistic enhancement factors proposed earlier in the theory of atomic parity violation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.