Abstract
We discuss a Bregman proximal point type algorithm for dealing with quasiconvex minimization. In particular, we prove that the Bregman proximal point type algorithm converges to a minimal point for the minimization problem of a certain class of quasiconvex functions without neither differentiability nor Lipschitz continuity assumptions, this class of nonconvex functions is known as strongly quasiconvex functions and, as a consequence, we revisited the general case of quasiconvex functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.