Abstract

In this paper we propose optimisation methods for variational regularisation problems based on discretising the inverse scale space flow with discrete gradient methods. Inverse scale space flow generalises gradient flows by incorporating a generalised Bregman distance as the underlying metric. Its discrete-time counterparts, Bregman iterations and linearised Bregman iterations are popular regularisation schemes for inverse problems that incorporate a priori information without loss of contrast. Discrete gradient methods are tools from geometric numerical integration for preserving energy dissipation of dissipative differential systems. The resultant Bregman discrete gradient methods are unconditionally dissipative and achieve rapid convergence rates by exploiting structures of the problem such as sparsity. Building on previous work on discrete gradients for non-smooth, non-convex optimisation, we prove convergence guarantees for these methods in a Clarke subdifferential framework. Numerical results for convex and non-convex examples are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.