Abstract

Growing hierarchical self-organizing models are characterized by the flexibility of their structure, which can easily accommodate for complex input datasets. However, most proposals use the Euclidean distance as the only error measure. Here we propose a way to introduce Bregman divergences in these models, which is based on stochastic approximation principles, so that more general distortion measures can be employed. A procedure is derived to compare the performance of networks using different divergences. Moreover, a probabilistic interpretation of the model is provided, which enables its use as a Bayesian classifier. Experimental results are presented for classification and data visualization applications, which show the advantages of these divergences with respect to the classical Euclidean distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.