Abstract

AbstractSolving a nonsmooth and nonconvex minimization problem can be approached as finding a zero of a set-valued operator. With this perspective, we propose a novel Majorizer–Minimizer technique to find a local minimizer of a nonsmooth and nonconvex function and establish its convergence. Our approach leverages Bregman distances to generalize the classical quadratic regularization. By doing so, we generate a family of regularized problems that encompasses quadratic regularization as a special case. To further demonstrate the effectiveness of our method, we apply it on a lasso regression model, showcasing its performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.