Abstract

In classical clustering, each data point is assigned to at least one cluster. However, in many applications only a small subset of the available data is relevant for the problem and the rest needs to be ignored in order to obtain good clusters. Certain nonparametric density-based clustering methods find the most relevant data as multiple dense regions, but such methods are generally limited to low-dimensional data and do not scale well to large, high-dimensional datasets. Also, they use a specific notion of “distance”, typically Euclidean or Mahalanobis distance, which further limits their applicability. On the other hand, the recent One Class Information Bottleneck (OC-IB) method is fast and works on a large class of distortion measures known as Bregman Divergences, but can only find a single dense region. This article presents a broad framework for finding k dense clusters while ignoring the rest of the data. It includes a seeding algorithm that can automatically determine a suitable value for k . When k is forced to 1, our method gives rise to an improved version of OC-IB with optimality guarantees. We provide a generative model that yields the proposed iterative algorithm for finding k dense regions as a special case. Our analysis reveals an interesting and novel connection between the problem of finding dense regions and exponential mixture models; a hard model corresponding to k exponential mixtures with a uniform background results in a set of k dense clusters. The proposed method describes a highly scalable algorithm for finding multiple dense regions that works with any Bregman Divergence, thus extending density based clustering to a variety of non-Euclidean problems not addressable by earlier methods. We present empirical results on three artificial, two microarray and one text dataset to show the relevance and effectiveness of our methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call