Abstract

The influence of double (electrical and magnetic) nonlinearity on the Bragg resonances of the hybrid electromagnetic-spin waves in a multiferroic crystal has been theoretically and experimentally revealed. The multiferroic crystal consists of an yttrium iron garnet layer with a periodic system of grooves on the surface and a ferroelectric strontium–barium titanate layer. A dispersion relation for the hybrid waves is obtained, and the mechanism of formation of main and hybrid band gaps, namely, suppression bands, is revealed. It is shown that taking into account the magnetic nonlinearity leads to frequency rearrangement of both band gaps and taking into account the electrical nonlinearity leads to frequency rearrangement of only the hybrid band gap. In the general case, the effects of the electrical and magnetic nonlinearities on the hybrid band gap can be compensated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call