Abstract

To initiate the creation of phytoextraction cultivars, plants were selected from 60 populations of N. caerulescens for their high shoot biomass or Cd, Ni, and Zn concentrations. They were self-pollinated, and the selection and fixation were continued for three generations in greenhouse conditions. Selected plants showed a potential to produce 5–10 t dry matter ha−1, which is required to decontaminate soils which have been moderately contaminated with Cd. However, the high biomass genotypes could not be fixed, probably both because of their complexity and to the sensitivity of this trait to environmental conditions, and plant density in particular. The selection led to an improvement to the Cd and Zn accumulation capacities of the plants, yet caused a decrease in their Ni accumulation. This is most likely due to a decline in Ni availability in soil, rather than to a deleterious effect of inbreeding. Metal accumulation appeared to be more heritable than biomass production and fixation for the former trait should be quicker than for the latter. The accumulation capacities of the selected plants permitted offtakes representing around 25% of the soil Cd in a single cropping. This potential has to be confirmed in field conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.