Abstract

The breeding season of long‐distance migratory birds often starts later and is shorter than in resident or short‐distance species breeding at the same latitude, but the reason for this is unclear. Here we investigate the association between migration distance and breeding phenology in a group of passerine birds, the finches and their allies, using phylogenetic comparative methods. We confirm that migration distance is related to aspects of the species’ breeding phenology after controlling for the effect of potentially confounding variables. Directional phylogenetic analyses suggest that evolutionary transitions in migration distance are determined by the breeding phenology. A relatively long migration distance is more likely to evolve in birds with a late, short breeding season, whereas transitions to short distance migration are more likely to occur in lineages with an early, long breeding season. These results suggest that migration distance is constrained by breeding phenology and not vice versa. Thus, breeding phenology may be an important ultimate factor shaping the evolution of migratory strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.