Abstract

S-adenosyl-l-methionine (SAM), a vital physiologically active substance in living organisms, is produced by fermentation over Saccharomyces cerevisiae. The main limitation in SAM production was the low biosynthesis ability of SAM in S. cerevisiae. The aim of this work is to breed an SAM-overproducing mutant through UV mutagenesis coupled with high-throughput selection. Firstly, a high-throughput screening method by rapid identification of positive colonies was conducted. White colonies on YND medium were selected as positive strains. Then, nystatin/sinefungin was chosen as a resistant agent in directed mutagenesis. After several cycles of mutagenesis, a stable mutant 616-19-5 was successfully obtained and exhibited higher SAM production (0.41g/L vs 1.39g/L). Furthermore, the transcript levels of the genes SAM2, ADO1, and CHO2 involved in SAM biosynthesis increased, while ergosterol biosynthesis genes in mutant 616-19-5 significantly decreased. Finally, building on the above work, S. cerevisiae 616-19-5 could produce 10.92 ± 0.2g/L SAM in a 5-L fermenter after 96h of fermentation, showing a 2.02-fold increase in the product yield compared with the parent strain. Paving the way of breeding SAM-overproducing strain has improved the good basis for SAM industrial production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call