Abstract

Animal production efficiency, and product volume and quality can be greatly increased by reducing disease losses. Genetic variation, a prerequisite for successful selection, has been found in animals and poultry exposed to a variety of viral, bacterial and parasitic infections. Breeding for disease resistance can play a significant role alone or in combination with other control measures including disease eradication, vaccination and medication. Feasibility of simultaneously improving resistance to specific diseases and production traits has been demonstrated. However, selection for specific resistance to all diseases of animals and poultry is impossible. Development of general disease resistance through indirect selection primarily on immune response traits may be the best long-term strategy but its applicability is presently limited by insufficient understanding of resistance mechanisms. Another hindrance may be negative genetic correlations among various immune response functions: phagocytosis, cell mediated and humoral immunity. To better assess the feasibility of increasing general disease resistance by indirect selection we must obtain estimates of heritability for immune response, disease resistance, and economic production traits, as well as genetic correlations among these traits. The present level of disease resistance in farm animals resulted from natural selection and from correlated responses to selection for production traits while the influence of artificial selection for resistance was minimal. Future research should be directed towards developing and applying breeding techniques that will increase resistance to diseases without compromising production efficiency and product quality. This will require cooperation of immunogeneticists, veterinarians and animal and poultry breeders. Significant progress in the improvement of resistance to diseases may result from the application of new techniques of molecular genetics and cell manipulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.