Abstract

Over the past several decades, breeding cool-season turfgrasses for improved disease resistance has been the focus of many turfgrass breeding programs. This review article discusses the dramatic improvements made in breeding Kentucky bluegrass (Poa pratensis) for resistance to leaf spot (caused by Drechslera poae), stem rust (caused by Puccinia graminis), and stripe smut (caused by Ustilago striiformis); perennial ryegrass (Lolium perenne) for resistance to gray leaf spot (caused by Pyricularia grisea), stem rust and crown rust (caused by Puccinia coronata); tall fescue (Festuca arundinacea) for resistance to brown patch (Rhizoctonia solani) and stem rust; creeping bentgrass (Agrostis stolonifera) for resistance to dollar spot (caused by Sclerotinia homoeocarpa); and fine fescues (Festuca spp.) for improved disease resistance. Historically, the dramatic improvements in disease resistance of the cool-season grasses have been attributed to traditional/conventional breeding techniques; however, it is likely that functional genomics and molecular techniques will play a more significant role in the development of cultivated turfgrasses as the specific genes and mechanisms for disease resistance are identified in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call