Abstract

Crop improvement by means of traditional or molecular breeding is a key strategy to accomplish the European Green Deal target of reducing pesticides by 50% by 2030. Regarding viticulture, this is exacerbated by the massive use of chemicals to control pathogen infections. Black rot is an emergent disease caused by the ascomycete Phyllosticta ampelicida, and its destructiveness is alarming vine growers. Implementing and improving effective phenotyping strategies are fundamental preliminary steps to breed disease resistant varieties and this work suggests good practices adopted for this purpose. Primarily, the pedigree of black rot resistance donors was reconstructed based on the collection of phenotypic historical data, highlighting unexplored sources of black rot resistance. Strains used for artificial infections were isolated, genetically characterized and mixed to avoid race-specific resistance selection. A new inoculation protocol based on the use of leaf mature lesions was developed. Ex vivo inoculation on detached leaves was effective for the evaluation of conidia germination and hyphal growth, but not for disease progression. Finally, the pedigree was used for the identification of 23 genotypes to be tested. Two breeding selections (NY39 and NY24) resulted symptomless in all assessments and a third one (F25P52) also showed very high resistance, although with a greater variability. Other two genotypes (F12P19 and ‘Charvir’) fell within the medium resistance category, making them good candidates in a regime of well-timed preventive treatments. In conclusion, this work was effective to a comprehensive parental line characterization and preparatory towards grapevine breeding programs for black rot resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call