Abstract

Given a discrete group [Formula: see text], for any integer [Formula: see text] we consider the family of all virtually abelian subgroups of [Formula: see text] of rank at most [Formula: see text]. We give an upper bound for the Bredon cohomological dimension of [Formula: see text] for this family for a certain class of groups acting on [Formula: see text] spaces. This covers the case of Coxeter groups, Right-angled Artin groups, fundamental groups of special cube complexes and graph products of finite groups. Our construction partially answers a question of Lafont.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.