Abstract

We study the breathing mode frequencies of a rotating Fermi gas trapped in a harmonic plus radial quartic potential. We find that as the radial anharmonicity increases, the lowest order radial mode frequency increases while the next lowest order radial mode frequency decreases. Then at a critical anharmonicity, these two modes merge and beyond this merge the cloud is unstable against the oscillations. The critical anharmonicity depends on both rotational frequency and the chemical potential. As a result of the large chemical potential in the BCS regime, even with a weak anharmonicity the lowest order mode frequency increases with decreasing the attractive interaction. For large enough anharmonicities in the weak-coupling BCS limit, we find that the excitation of the breathing mode frequencies make the atomic cloud unstable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.