Abstract

The phenomenon of breathing mode excitation or bound-state wavepacket squeezing and spreading driven by a time-dependent oscillator frequency (due to either a transient force constant or mass) is considered here. An easily implemented theory of stimulated wavepacket dynamics for near-harmonic systems is presented which describes a variety of generic time dependences such as single sudden excitation, double switching (excitation/time delay/de-excitation) and decaying initially excited states which characterize many processes in spectroscopy, pump-probe control in intramolecular dynamics, and femtochemistry. The model is used as the theoretical basis for understanding such diverse phenomena as quantum excitation due to temporary neutron capture, stimulated bond-breaking resulting in delocalization, desorption, or dissociation, and breathing mode excitation of ultracold atoms trapped in optical lattices. Whilst the first two examples are speculative, results for transient wavepacket dynamics of the occupied excited optical lattice are in accord with recent experimental observations reported by the NIST Laser Cooling Group. Emphasis on the inherent theoretical simplicity and the multidisciplinary aspects of near-harmonic breathing mode excitation, as exemplified by the specific realizations considered here, has been a major intent of this topical review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.