Abstract

Recently, three-dimensional (3D) magnetic textures have moved into the focus of spintronics as both technologically relevant and physically intriguing on a fundamental level. A rich variety of 3D textures is currently being investigated; however, their unambiguous experimental detection and detailed study remains challenging. In this work, a new type of chiral 3D spin-texture, consisting of two antiferromagnetically coupled Néel bobbers, is explored. The static properties of this structure depend on the chirality of the individual bobbers. Different chirality combinations are studied with regard to their phase stability regions by micromagnetic simulations and compared to antiferromagnetically coupled skyrmion tubes. Furthermore, the coupled internal breathing modes are investigated by application of a periodically alternating external magnetic field. The breathing modes of each studied system possess a unique fingerprint, which might allow for the identification of the resonating spin textures via their dispersion curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call