Abstract

Small increases in external dead space (V(D)) augment the exercise ventilatory response via a neural mechanism known as short-term modulation (STM). We hypothesized that breathing mechanics would differ during exercise, increased V(D) and STM. Men were studied at rest and during cycle exercise (10-50W) without (Control) and with added V(D) (200-600ml). With added V(D), V(T) increased via increased end-inspiratory lung volume (EILV), with no change in end-expiratory lung volume (EELV), indicating recruitment of inspiratory muscles only. With exercise, V(T) increased via both decreased EELV and increased EILV, indicating recruitment of both expiratory and inspiratory muscles. A significant interaction between the effects of exercise and V(D) on mean inspiratory flow indicated that the augmented exercise ventilatory response with added V(D) (i.e. STM) resulted from increased drive to the inspiratory muscles. These results reveal different patterns of respiratory muscle recruitment among experimental conditions. Hence, we conclude that fundamental differences exist in the neural control of ventilatory responses during exercise, increased V(D) and STM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.