Abstract
Small passerine birds in the north need to take advantage of several behavioral and physiological mechanisms to maintain energy balance during the winter characterized by low food supply, low ambient temperatures, and short days. Here we test if the breathing pattern of a non-migratory species, the great tit (Parus major), show seasonal variation that could help the species keeping a positive energy balance in the winter. To this aim, we measured oxygen consumption and ventilatory variables (tidal volume and respiratory frequency) in summer- and winter-acclimatized great tits exposed to ambient temperatures between –15 and 30°C. Winter-acclimatized great tits had a higher resting metabolic rate and a different breathing pattern compared to the summer-acclimatized birds. During the winter the great tits utilized a breathing pattern, consisting of an increased respiratory frequency to tidal volume ratio compared to summer-acclimatized birds at all temperatures. The higher oxygen uptake and the altered breathing pattern in the winter-acclimatized tits resulted in a higher lung oxygen extraction. However, during acute cold exposure neither the winter- nor summer-acclimatized great tits increased the oxygen extraction at low ambient temperature. The higher lung oxygen extraction in the winter-acclimatized tits implies that the birds will save on the minute ventilation, which reduces the evaporative water loss through respiration. The daily water loss saved can be more than 1 g of water per day. This is a substantial saving corresponding to a saving in evaporative heat loss corresponding to between 4 and 8% of the resting metabolic rate. This might be significant in keeping an energy balance, and the altered breathing pattern in the winter, ensuring an increased oxygen extraction, may therefore represents an additional physiological mechanism making it possible for small passerine birds to survive the northern winter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.