Abstract
Breathing discrete vortices are obtained as numerically exact and generally quasiperiodic, localized solutions to the discrete nonlinear Schrödinger equation with cubic (Kerr) on-site nonlinearity, on a two-dimensional square lattice with nearest-neighbor couplings. We identify and analyze three different types of solutions characterized by circulating currents and time-periodically oscillating intensity distributions, two of which have been discussed in earlier works while the third being, to our knowledge, presented here for the first time. (i) A vortex-breather, constructed from the anticontinuous limit as a superposition of a single-site breather and a discrete vortex surrounding it, where the breather and vortex are oscillating at different frequencies. (ii) A charge-flipping vortex, constructed from an anticontinuous solution with an even number of sites on a closed loop, with alternating sites oscillating at different frequencies. (iii) A breathing vortex, constructed by continuation of a non-resonating linear internal eigenmode of a stationary discrete vortex. We illustrate by examples, using numerical Floquet analysis for solutions obtained from a Newton scheme, that linearly stable solutions exist from all three categories, at sufficiently strong discreteness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.