Abstract
The identification of a breathing crack is a highly challenging inverse problem in structural health monitoring. A novel output-only damage diagnostic technique based on Principal Component Analysis (PCA) is proposed for breathing crack identification in structures excited by harmonic excitation. The proposed approach basically utilizes the residues obtained from PCA of the forced acceleration-time history responses of the structure for breathing crack identification. In this approach, the traditional single-tone, bitone and as well as multi-tone harmonic excitations are considered as input to the structure while exploring the residues of the responses for breathing crack identification. A new Damage Localization Index (DLI) based on the Fourier spectrum amplitudes of the nonlinear sensitive features (i.e. buried in residues), measured at varied locations spatially across the structure is proposed for breathing crack localization. The robustness and effectiveness of the proposed PCA-based breathing crack localization approach is verified through both numerical and experimental studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.