Abstract

We present results on spatially localized oscillations in some inhomogeneous nonlinear lattices of Fermi–Pasta–Ulam (FPU) type derived from phenomenological nonlinear elastic network models proposed to study localized protein vibrations. The main feature of the FPU lattices we consider is that the number of interacting neighbors varies from site to site, and we see numerically that this spatial inhomogeneity leads to spatially localized normal modes in the linearized problem. This property is seen in 1-D models, and in a 3-D model with a geometry obtained from protein data. The spectral analysis of these examples suggests some non-resonance assumptions that we use to show the existence of invariant subspaces of spatially localized solutions in quartic Birkhoff normal forms of the FPU systems. The invariant subspaces have an additional symmetry and this fact allows us to compute periodic orbits of the quartic normal form in a relatively simple way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call