Abstract

This paper is devoted to the study of a (3 + 1)-dimensional generalized nonlinear evolution equation for the shallow-water waves. The breather solutions with different structures are obtained based on the bilinear form with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions, and we also study general lump soliton, lumpoff solution and superposition phenomenon between lump soliton and breather solution. Besides, some theorems about the superposition between lump soliton and [Formula: see text]-soliton ([Formula: see text] is a nonnegative integer) are given. Some examples, including lump-[Formula: see text]-exponential type, lump-[Formula: see text]-logarithmic type, higher-order lump-type [Formula: see text]-soliton, are given to illustrate the correctness of the theorems and corollaries described. Finally, some novel nonlinear phenomena, such as emergence of lump soliton, degeneration of breathers, fission and fusion of lumpoff, superposition of lump-[Formula: see text]-solitons, etc., are analyzed and simulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.