Abstract

Background and aimsIn recent years, noninvasive techniques are becoming conspicuous for diabetes detection. Sweat, tear, saliva, urine and breath-based methods showing prominent results in breath acetone detection which is considered as a biomarker of diabetes. A concrete relationship between breath acetone and BG helps in the development of devices for diabetes detection. MethodsThe primary source for this study includes scholarly publications that primarily focus on the development of biosensors and systems for diabetes detection using acetone present in breath. Articles were analysed to examine various types of biosensors with their sensing materials to provide acetone detection limits. Recent noninvasive systems and products have been investigated and determine the relationship between breath acetone and BG levels. ResultsBreath-based biosensor technologies are capable for diabetes detection. The acetone biosensor detection ranges from 100 ppb to 100 ppm, and it can applicable from room temperature to 400 °C. In healthy volunteers, acetone level ranges from 0.32 to 2.19 ppm, while patients with diabetes exhibit a wider range of 0.22–21 ppm depending on the biosensor, detection method, and clinical circumstances of patients and lab conditions. ConclusionThis manuscript presents an extensive analysis of breath-based biosensors and their potential for detection of diabetes. Acetone detection methods are promising but unable to provide concrete correlation between breath acetone and blood glucose levels. The present study motivates the continued research and development of biosensors, and electronic devices to provide linear relationship of breath acetone and BG for noninvasive diabetes detection applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call