Abstract

Building an intelligent interface between plants and the environment is of paramount importance for real-time monitoring of the health status of plants, especially promising for high agricultural yield. Although the advancement of various sensors allows automated monitoring, developing a sustainable power supply for these electronic devices remains a formidable challenge. Herein, a waterproof and breathable triboelectric nanogenerator (WB-TENG) is designed based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofibers embedded with fluorinated carbon nanotubes (F-CNT) microspheres, which was realized by simultaneous electrospinning and electrospraying, respectively. Using carbon nanotubes (CNT) as the electrode, the WB-TENG shows micro-to-nano hierarchical porous structures and high electrostatic adhesion, exhibiting a high output power density of 330.6 μW cm-2, breathability, and hydrophobicity. Besides, the WB-TENG can be conformally self-attached to plant leaves without sacrificing the intrinsic physiological activities of plants, capable of harvesting typical environmental energy from wind and raindrops. Results demonstrate that the WB-TENG can serve as a sustainable power supply for a wireless plant sensor, enabling real-time monitoring of the health status of plants. This work realizes the concept of constructing a plant compatible TENG with environment adaptivity and energy scavenging ability, showing great potential in building a self-powered agriculture system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call