Abstract
Flexible strain-sensitive sensors have been receiving intensive attention in many aspects ranging from human motion capture to health-related signal monitoring. However, the fabric strain sensor with multi-directional sensing capability, besides having a wide strain range and high response sensitivity, is still very challenging and deserves further exploration. Here, we have prepared a wearable cotton fabric strain sensor uniformly decorated with single-walled carbon nanotubes through a facile solution process. The unique hierarchical architecture of the cotton fabric woven from twisted yarns combined with the conductive carbon nanotube network endows the fabric strain sensors with attractive performance, including low detection limit, large workable strain range, fascinating stability and durability, excellent direction-dependent strain response, and good air permeability. The strain sensor without polymer encapsulation can not only monitor subtle and large multi-directional motions but also fit well to the human body with satisfactory comfort, demonstrating its potential application in wearable electronics and intelligent clothing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.