Abstract

Electronic nose (e-nose) is a new technology applied for the identification of volatile organic compounds (VOC) in breath air. Measuring VOC in exhaled breath can adequately identify airway inflammation, especially in asthma. Its noninvasive character makes e-nose an attractive technology applicable in pediatrics. We hypothesized that an electronic nose could discriminate the breath prints of patients with asthma from controls. A cross-sectional study was conducted and included 35 pediatric patients. Eleven cases and seven controls formed the two training models (models A and B). Another nine cases and eight controls formed the external validation group. Exhaled breath samples were analyzed using Cyranose 320, Smith Detections, Pasadena, CA, USA. The discriminative ability of breath prints was investigated by principal component analysis (PCA) and canonical discriminative analysis (CDA). Cross-validation accuracy (CVA) was calculated. For the external validation step, accuracy, sensitivity and specificity were calculated. Duplicate sampling of exhaled breath was obtained for ten patients. E-nose was able to discriminate between the controls and asthmatic patient group with a CVA of 63.63% and an M-distance of 3.13 for model A and a CVA of 90% and an M-distance of 5.55 for model B in the internal validation step. In the second step of external validation, accuracy, sensitivity and specificity were 64%, 77% and 50%, respectively, for model A, and 58%, 66% and 50%, respectively, for model B. Between paired breath sample fingerprints, there were no significant differences. An electronic nose can discriminate pediatric patients with asthma from controls, but the accuracy obtained in the external validation was lower than the CVA obtained in the internal validation step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call