Abstract

IntroductionBreast tumor kinase (Brk/protein tyrosine kinase 6 (PTK6)) is a nonreceptor, soluble tyrosine kinase overexpressed in the majority of breast tumors. Previous work has placed Brk downstream of epidermal growth factor receptor (ErbB) activation and upstream of extracellular signal-regulated kinase 5 (ERK5) and p38 mitogen-activated protein (MAP) kinases. Herein we investigate the regulation of Brk kinase activity and cell migration in response to treatment of keratinocytes (HaCaT cells) and breast cancer cell lines (MDA-MB-231 and T47D cells) with hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), peptide ligands for Met and Ron receptors, respectively.MethodsIn vitro kinase assays were performed to directly measure Brk kinase activity in response to MET and RON ligands. Transfection of Brk-targeted RNAi was used to knock down endogenous Brk or ERK5 in multiple cell lines. Kinase activities (downstream of MET signaling) were assayed by Western blotting using total and phospho-specific antibodies. Boyden chamber assays were used to measure cell migration in response to manipulation of Brk and downstream MET effectors. Rescue experiments were performed by knock down of endogenous Brk using RNAi (targeting the untranslated region (3′-UTR)) and transient transfection (re-expression) of either wild-type or kinase-inactive Brk.ResultsBrk gene silencing revealed that HGF, but not MSP, induced robust Brk-dependent cell migration. Brk and ERK5 copurified in HGF-induced protein complexes, and Brk/ERK5 complexes formed independently of Brk kinase activity. ERK5 was required for breast cancer cell but not keratinocyte cell migration, which became ERK1/2-dependent upon ERK5 knockdown. Notably, rescue experiments indicated that the kinase activity of Brk was not required for HGF-induced cell migration. Further, expression of either wild-type or kinase-inactive Brk in Brk-null MDA-MB-435 cells activated ERK5 and conferred increased HGF-induced cell migration.ConclusionsThese results have identified Brk and ERK5 as important downstream effectors of Met signaling to cell migration. Targeting ERK5 kinase activity or inhibiting the formation of Brk/ERK5 complexes may provide an additional means of blocking cell migration associated with breast cancer progression to metastasis.

Highlights

  • Breast tumor kinase (Brk/protein tyrosine kinase 6 (PTK6)) is a nonreceptor, soluble tyrosine kinase overexpressed in the majority of breast tumors

  • Similar results were observed in MDA-MB-231 cells; Brk was robustly activated in response to 15-60 min of hepatocyte growth factor (HGF) exposure as measured by increased autophosphorylation of immunopurified Brk and increased phosphorylation of recombinant srcassociated during mitosis (Sam68) in vitro (Figure 1b)

  • These cells appear relatively insensitive to HGF treatment; we typically observed a modest increase in Brk kinase activity, as measured by phosphorylation of Sam68 in vitro at 15 min of HGF treatment (Figure 1c)

Read more

Summary

Introduction

Breast tumor kinase (Brk/protein tyrosine kinase 6 (PTK6)) is a nonreceptor, soluble tyrosine kinase overexpressed in the majority of breast tumors. We investigate the regulation of Brk kinase activity and cell migration in response to treatment of keratinocytes (HaCaT cells) and breast cancer cell lines (MDA-MB-231 and T47D cells) with hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), peptide ligands for Met and Ron receptors, respectively. Breast tumor kinase (Brk), termed protein tyrosine kinase 6 (PTK6), was cloned from a human metastatic breast tumor and is a member of a novel family of soluble or nonreceptor PTKs with approximately 56% homology to the kinase domain of c-Src [1]. Brk is undetectable in normal mammary gland It is overexpressed in a majority of human breast tumors and breast cancer cell lines [3,4,5,6]. Brk is present in the nuclei of normal prostate cells and welldifferentiated prostate cancer cells, but mislocalized (more cytoplasmic) in undifferentiated or aggressive prostate cancer cells [11]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.