Abstract
Breast cancer is dangerous in women. It is generally found after the symptoms appear. Detecting the breast cancer at an early stage and understanding the treatment are the most important strategies to prevent death from cancer. Generally, for detection of breast cancer, breast Magnetic Resonance Image (MRI) takes place. It is one of the best approaches to detect tumor in women. In this research paper, a combination of selection methods for seed region growing image segmentation is suggested to detect breast tumor. The suggested method has been divided into following parts: First, the pre-processing of breast image is performed. Second, the automatic threshold for binarization process is calculated. Third, the number of seed points and its position in the breast image are determined automatically using density of pixels value. Fourth, a method for calculation of threshold value is proposed for the purpose of region creation in seed region growing. For the evaluation purpose, the proposed method was applied and tested on the RIDER MRI breast dataset from National Biomedical Imaging Archive (NBIA). After the test was performed, it was observed that proposed algorithm gives 90% accuracy, 88% True Negative Fraction, 91% True Positive Fraction, 10% Misclassification Rate, 94% Precision and 86% Relative Overlap which is better than other existing methods. It not only gives better evaluation measure but also provides segmentation method for multiple tumor detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.