Abstract
Breast cancer is a main cause of disease and death for women globally. Because of the limitations of traditional mammography and ultrasonography, magnetic resonance imaging (MRI) has gradually become an important radiological method for breast cancer assessment over the past decades. MRI is free of the problems related to radiation exposure and provides excellent image resolution and contrast. However, a disadvantage is the injection of contrast agent, which is toxic for some patients (such as patients with chronic renal disease or pregnant and lactating women). Recent findings of gadolinium deposits in the brain are also a concern. To address these issues, this paper develops an intravoxel incoherent motion- (IVIM-) MRI-based histogram analysis approach, which takes advantage of several hyperspectral techniques, such as the band expansion process (BEP), to expand a multispectral image to hyperspectral images and create an automatic target generation process (ATGP). After automatically finding suspected targets, further detection was attained by using kernel constrained energy minimization (KCEM). A decision tree and histogram analysis were applied to classify breast tissue via quantitative analysis for detected lesions, which were used to distinguish between three categories of breast tissue: malignant tumors (i.e., central and peripheral zone), cysts, and normal breast tissues. The experimental results demonstrated that the proposed IVIM-MRI-based histogram analysis approach can effectively differentiate between these three breast tissue types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.