Abstract
Breast cancer is the most common malignant disease in women, but some basic questions remain in breast cancer biology. To answer these, several cell models were developed. Recently, the use of improved cell-culture conditions has enabled the development of a new primary cell model with certain luminal characteristics. This model is relevant because, after the introduction of a specific set of genetic elements, the transformed cells yielded tumors resembling human adenocarcinomas in mice. The use of improved cell-culture conditions supporting the growth of these breast primary epithelial cells was expected to delay or eliminate stress-induced senescence and lead to the propagation of normal cells. However, no studies have been carried out to investigate these points. Propagation of breast primary epithelial cells was performed in WIT medium on Primaria plates. Immunofluorescence, western blot and qRT-PCR were used to detect molecular markers, and to determine the integrity of DNA damage-response pathways. Promoter methylation of p16 INK4a was assessed by pyrosequencing. In order to obtain a dynamic picture of chromosome instability over time in culture, we applied FISH methodologies. To better link chromosome instability with excessive telomere attrition, we introduced the telomerase reverse transcriptase human gene using a lentiviral vector. We report here that breast primary epithelial cells propagated in vitro with WIT medium on Primaria plates express some luminal characteristics, but not a complete luminal lineage phenotype. They undergo a p16-dependent stress-induced senescence (stasis), and the cells that escape stasis finally enter a crisis state with rampant chromosome instability. Chromosome instability in these cells is driven by excessive telomere attrition, as distributions of chromosomes involved in aberrations correlate with the profiles of telomere signal-free ends. Importantly, ectopic expression of the human TERT gene rescued their chromosomal instability phenotype. Essentially, our data show that contrary to what was previously suggested, improved culture conditions to propagate in vitro mammary epithelial cells with some luminal characteristics do not prevent stress-induced senescence. This barrier is overcome by spontaneous methylation of the p16 INK4a promoter, allowing the proliferation of cells with telomere dysfunction and ensuing chromosome instability.Electronic supplementary materialThe online version of this article (doi:10.1186/s13058-015-0667-z) contains supplementary material, which is available to authorized users.
Highlights
Breast carcinomas exhibit a great diversity in clinical parameters
We aimed to investigate whether breast primary epithelial cell (BPEC), which, are able to produce adenocarcinoma-like tumors after experimental transformation, develop mechanisms to bypass senescence with ensuing telomere dysfunction and chromosome instability
According to the results reported by Ince et al [1], our BPEC cultures expressed Claudin-4, a protein that is exclusive of the inner luminal cell layer of the normal breast epithelium (Fig. 1c), at the three analyzed population doubling (PD) (Fig. 1b and d)
Summary
Breast carcinomas exhibit a great diversity in clinical parameters. The tumor cell phenotype can be influenced by different factors, including genetic and epigenetic changes and cell-stroma interactions, and by the initial normal epithelial cell type that serves as a precursor of the Feijoo et al Breast Cancer Research (2016) 18:7 maintaining cell polarity [5, 6]. The standard in vitro culture of breast organoids with mammary epithelial growth medium (MEGM), mammary epithelial growth medium-basal (MEpiCM) or mammary epithelial growth medium MCDB-170 allows growth of cells that after a few population doublings, express mostly myoepithelial molecular markers These cells propagated in vitro are termed human mammary epithelial cells (HMECs) [7, 8]. In 2007, the laboratory of Weinberg developed a new culture medium termed WIT, which along with the use of a modified plastic surface (Primaria plates), allowed the propagation of breast epithelial cells with some luminal characteristics, such as the presence of Claudin-4 and absence of CD-10 [1]. While the introduction of H-RAS, hTERT and SV40 LT/st in HMECs yielded tumors similar to squamous cell carcinomas, transformed BPECs were highly tumorigenic and metastatic, and yielded tumors closely similar to human breast adenocarcinomas [1], which is the most common type of breast cancer in women
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.