Abstract
In this study, an information-based algorithm, called c-shells based deterministic annealing (CSDA), is proposed for breast mass segmentation on digital mammograms. CSDA recasts the fuzzy clustering concept into the probability framework and offers two improved features over existing clustering algorithms. First, it is a global minimization algorithm through mass constrained deterministic annealing rather than a local minimization method in the original fuzzy c-shells (FCS) approach. Second, the prototype in this algorithm is shell, which is more effective in segmentation with compact or hollow spherical shells compared to the standard deterministic annealing (DA) algorithm. Experimental results show that the information based CSDA clustering algorithm is a promising image segmentation technique for digital mammographic mass detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.