Abstract
In recent years, the high prevalence of breast cancer in women has risen dramatically. Therefore, segmentation of breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is a necessary task to assist the radiologist inaccurate diagnosis and detection of breast cancer in breast DCE-MRI. For image segmentation, thresholding is a simple and effective method. In breast DCE-MRI analysis for lesion detection and segmentation, radiologists agree that optimization via multi-level thresholding technique is important to differentiate breast lesions from dynamic DCE-MRI. In this paper, multi-level thresholding using Student Psychology-Based Optimizer (SPBO) is proposed to segment the breast DCE-MR images for lesion detection. First, MR images are denoised using the anisotropic diffusion filter and then, Intensity Inhomogeneities (IIHs) are corrected in the preprocessing step. The preprocessed MR images are segmented using the SPBO algorithm. Finally, the lesions are extracted from the segmented images and localized in the original MR images. The proposed method is applied on 300 Sagittal T2-Weighted DCE-MRI slices of 50 patients, histologically proven, and analyzed. The proposed method is compared with algorithms such as Particle Swarm Optimizer (PSO), Dragonfly Optimization (DA), Slime Mould Optimization (SMA), Multi-Verse Optimization (MVO), Grasshopper Optimization Algorithm (GOA), Hidden Markov Random Field (HMRF), Improved Markov Random Field (IMRF), and Conventional Markov Random Field (CMRF) methods. The high accuracy level of 99.44%, sensitivity 96.84%, and Dice Similarity Coefficient (DSC) 93.41% are achieved using the proposed automatic segmentation method. Both quantitative and qualitative results demonstrate that the proposed method performs better than the eight compared methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.