Abstract

ObjectivesDeregulation of long non-coding RNAs (lncRNAs) has been frequently reported in breast cancer (BC). This goes to show the importance of understanding its significant contribution towards breast carcinogenesis. In the present study, we clarified a carcinogenic mechanism based on the ARRDC1-AS1 delivered by breast cancer stem cells-derived extracellular vesicles (BCSCs-EVs) in BC. MethodsThe isolated and well characterized BCSCs-EVs were co-cultured with BC cells. The expression of ARRDC1-AS1, miR-4731-5p, and AKT1 was determined in BC cell lines. BC cells were assayed for their viability, invasion, migration and apoptosis in vitro by CCK-8, Transwell and flow cytometry, as well as tumor growth in vivo after loss- and gain-of function assays. Dual-luciferase reporter gene, RIP and RNA pull-down assays were performed to determine the interactions among ARRDC1-AS1, miR-4731-5p, and AKT1. ResultsElevation of ARRDC1-AS1 and AKT1 as well as miR-4731-5p downregulation were observed in BC cells. ARRDC1-AS1 was enriched in BCSCs-EVs. Furthermore, EVs containing ARRDC1-AS1 enhanced the BC cell viability, invasion and migration and glutamate concentration. Mechanistically, ARRDC1-AS1 elevated the expression of AKT1 by competitively binding to miR-4731-5p. ARRDC1-AS1-containing EVs were also found to enhance tumor growth in vivo. ConclusionCollectively, BCSCs-EVs-mediated delivery of ARRDC1-AS1 may promote the malignant phenotypes of BC cells via the miR-4731-5p/AKT1 axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call