Abstract

10500 Background: Inherited pathogenic variants in ATM, CHEK2, and PALB2 confer moderate to high risks of breast cancer. The optimal approach to screening in these women has not been established. Methods: We used two simulation models from the Cancer Intervention and Surveillance Modeling Network (CISNET) and data from the Cancer Risk Estimates Related to Susceptibility consortium (CARRIERS) to project lifetime breast cancer incidence and mortality in ATM, CHEK2, and PALB2 carriers. We simulated screening with annual mammography from ages 40-74 alone and with annual magnetic resonance imaging (MRI) starting at ages 40, 35, 30, and 25. Joint and separate mammography and MRI screening performance was based on published literature. Lifetime outcomes per 1,000 women were reported as means and ranges across both models. Results: Estimated risk of breast cancer by age 80 was 22% (21-23%) for ATM, 28% (26-30%) for CHEK2, and 40% (38-42%) for PALB2. Screening with MRI and mammography reduced breast cancer mortality by 52-60% across variants (Table). Compared to no screening, starting MRI at age 30 increased life years (LY)/1000 women by 501 (478-523) in ATM, 620 (587-652) in CHEK2, and 1,025 (998-1,051) in PALB2. Starting MRI at age 25 versus 30 gained 9-12 LY/1000 women with 517-518 additional false positive screens and 197-198 benign biopsies. Conclusions: For women with ATM, CHEK2, and PALB2 pathogenic variants, breast cancer screening with MRI and mammography halves breast cancer mortality. These mortality benefits are similar to those for MRI screening for BRCA1/2 mutation carriers and should inform practice guidelines.[Table: see text]

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call