Abstract

Tadalafil, a phosphodiesterase 5 (PDE5) inhibitor, is a candidate therapeutic agent for fetal growth restriction and hypertensive disorders of pregnancy. In this study, we elucidated the fetal transfer of tadalafil in comparison with that of sildenafil, the first PDE5 inhibitor to be approved. We also examined the contributions of multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP) to fetal transfer. Tadalafil or sildenafil was administered to wild-type, Mdr1a/b-double-knockout or Bcrp-knockout pregnant mice by continuous infusion from gestational day (GD) 14.5 to 17.5, and the fetal-to-maternal plasma concentration ratio of unbound drug (unbound F/M ratio) was evaluated at GD 17.5. The values of unbound F/M ratio of tadalafil and sildenafil in wild-type mice were 0.80 and 1.6, respectively. The unbound F/M ratio of tadalafil was increased to 1.1 and 1.7 in Mdr1a/b-knockout and Bcrp-knockout mice, respectively, while the corresponding values for sildenafil were equal to or less than that in wild-type mice, respectively. A transcellular transport study revealed that basal-to-apical transport of both tadalafil and sildenafil was significantly higher than transport in the opposite direction in MDCKII-BCRP cells. Our research reveals that tadalafil is a newly identified substrate of human and mouse BCRP, and it appears that the fetal transfer of tadalafil is, at least in part, attributed to the involvement of BCRP within the placental processes in mice. The transfer of sildenafil to the fetus was not significantly constrained by BCRP, even though sildenafil was indeed a substantial substrate for BCRP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call