Abstract
Breast cancer has a devastating effect on women. Different strategies of breast cancer classification exist with minimal work done on the prediction of the occurrence of the disease in potential carriers. In this study, a breast cancer predictive system has been developed using bidirectional long short-term memory (BiLSTM) for feature extraction and learning while the two-dimensional convolutional neural network (CNN) was used for breast cancer classification. Histopathological images were used for cancer prediction. Python was used as the programming language for implementing the system. The model was tested using datasets from The Cancer Imaging Archive (TCIA) repository. An accuracy level of 98.8% (higher than the most recent existing model) was achieved for the prediction of the future occurrence of breast cancer based on the tests on the dataset. The application of the model using live data from women can help in the prediction and control of the occurrence of breast cancer amongst women.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.