Abstract
Although successful detection of malignant tumors from histopathological images largely depends on the long-term experience of radiologists, experts sometimes disagree with their decisions. Computer-aided diagnosis provides a second option for image diagnosis, which can improve the reliability of experts’ decision-making. Automatic and precision classification for breast cancer histopathological image is of great importance in clinical application for identifying malignant tumors from histopathological images. Advanced convolution neural network technology has achieved great success in natural image classification, and it has been used widely in biomedical image processing. In this paper, we design a novel convolutional neural network, which includes a convolutional layer, small SE-ResNet module, and fully connected layer. We propose a small SE-ResNet module which is an improvement on the combination of residual module and Squeeze-and-Excitation block, and achieves the similar performance with fewer parameters. In addition, we propose a new learning rate scheduler which can get excellent performance without complicatedly fine-tuning the learning rate. We use our model for the automatic classification of breast cancer histology images (BreakHis dataset) into benign and malignant and eight subtypes. The results show that our model achieves the accuracy between 98.87% and 99.34% for the binary classification and achieve the accuracy between 90.66% and 93.81% for the multi-class classification.
Highlights
Cancer is one of the leading cause of human death worldwide currently
We find that the performance of the cosine scheduler and exponential scheduler is not as good as that of step scheduler for breast cancer histopathology image classification network (BHCNet), which may be due to the learning rate decayed too fast
To analyze the performance of the BHCNet and Gauss error scheduler, we test them on Breast Cancer Histopathological Image (BreaKHis) [31]
Summary
Cancer is one of the leading cause of human death worldwide currently. Breast cancer-related deaths are higher compared to the other types of cancer-related deaths [1], and this type of cancer causes thousands of deaths each year worldwide [2]. It has been reported that the incidence rate of breast cancer ranges from 19.3 per 100,000 women in East Africa, to 89.7 per 100,000 women in Western Europe [3]. The number of new cases has continued to grow in recent years, and this number is expected to increase to 27 million in 2030 [4].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.